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INTRODUCTION

The approximation problem considered here is to represent or approximate
a prescribed continuous and real-valued function of two variables by the sum
of two continuous functions of one variable:

f(x, p) &~ glx) - A(y).

To make the problem morc precisc, Iet X and Y be compact topological
spaces, and let f= C(X X Y). Denole by M the set of functions ¢ which have
the form

lx. ) = g(x) - A(y)  geC(X), he C(Y).
The distance from fto M is defined by

dist(f, M) = inf j f— &i = inf sup | f(x, y) — &(x. y)l.
dcM

deM (x,9)
An element ¢ e M is sought such that i f — ¢ i — dist(f, M). Such a ¢ is

terimed a best approximation to f. Alternatively, onc asks foranf* ¢ C(X x ¥)
such that f* -- fe M and i f* ! is a minimum, i.e., i|f* ! - dist(f, M).
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306 . LIGHT AND CHENEY

In 1951, Diliberto and Straus published in [3] an algorithm for solving this
problem, and in [4], Golomb has shown that a generalized form of this
algorithm is applicable in any normed linear space. The procedure of [3] is
most easily explained in terms of two non-linear averaging operators defined
by the equations

(AafNy) = FsupfCx, y) + Finf F(x, ),
(#2f)x) = Fsup f(x, y) + Finf f(x, 3).

The algorithm is then simply -

flzf; fén Z.fzn—l‘—gn’ f2n+1 :fzn_‘hn,
8n = jlyfzn-—l s h, = ‘/%mfzn .

One of the principal results of [3] can be summarized thus:

THEOREM. The sequence {f,,} is equicontinuous and possesses cluster points.
Each cluster point f* is a solution to the problem. f* — fe M and || f*| =
dist(f, M). Furthermore, M, f* = M, f* =0, |f.lldist(f, M), and

foz —Sull L O.

1. CONVERGENCE OF FUNCTIONS IN THE ALGORITHM

One of the questions left unanswered in [3] is whether the sequence {f,}
converges. This was answered affirmatively by Aumann in [2]. We give a new
proof of this result in Theorem 1.1 below.

Lemma 1.1, || M f— MF )| < || f — F. Similarly for 4, .
Proof. Let 8 = | f— F|. Then we have the pointwise inequality
-8 +Ff<S+F
Since .#,, is order-preserving, and constant-preserving,
—8 + MF < Mpf < 6+ MF.

This is equivalent to the inequality in the lemma. J

In the following three lemmas we give some of Aumann’s results [2].
Proofs are included for completeness.
The following lemma is elementary.
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Lemma 1.2, For two functions f and F,
max f(x) — max F(x) < max{f(x) —F(x)}
with equality holding only if there exists a point at which all three maxima are

attained.

Lemva 1.3, [Aumann, [2]]. Let 7, denote the maximum of | f{p)| as p

ranges over points satisfying | fu1(p) = D) = | fosa =Sull- If | frra = fu |l =
an _fn—l ” then Tp—1 > Ty + ”fn '—fn-—l H

Proof. We suppose n = 2k; the case when » is odd is similar. Using
Lemma 1.1 and the fact that Z,f;,_; = 0, we have

Nl =l Maf | = | Mofor — Mool < N for — frnal = T g5l (D)

By the definition of =, there exists y, such that
[ Ayl = 1l Ay | and Top == MAX F ferls yo)l-

Since || A, || = || gx || by hypothesis, one of the following holds:
(l) (’ﬁx 2k '//fo:‘zk—-])( y()) = “ gr ”:
() (Ao for — Mpfoes(Ye) = —ll &l
Suppose (i) holds. Then rewrite (i) in the forms
%[mgxf%(xa Vo) — mxaxf;a‘k——l(xa Yol

+ %[mxinfzk(x, Vo) — mxinfqu(x’ yo)l = li g ll,

%[mgxf (X, Vo) — m’?xf 21X ¥9)]

+ %[mf-x ~far-1(X, ¥o) — max —farlx, yo)] = 1l gx |-

By Lemma 1.2, each bracketed expression is at most || g ||, and hence by the
equality condition of Lemma 1.2, there exists an x, such that —g,(x,) =
gl falXo > Yo) = max, foulx, ¥o), and  for ol , Vo) = Max, for_s(X, ¥o)

From the definition of g, gx(x,) = 3 max, for—1(%, ¥) + § miny, for (30, ¥}
whence

Tope1 2 —‘miynf ae—1(X0 » ¥) = —2gu{xe) + mgxf 2i-1(X0 » V)
= —2g1(xo) + for—a(Xo » Yo) = —gu(X0) + forlXo » Vo)
=gl + Tor -

Case (it) is similar. [
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LemMA 1.4 [Aumann, 2). In the Diliberto-Stiaus algorithm, we have
2, ~>0andh, — 0.

Proof. Diliberto and Straus [3] stated that || g, || = || Al =gl =

One proves this easily by Eq. (1) in the previous proof.

Thus we can define 6 = lim|| f,,.; — f» |l. Because of equicontinuity (see [3] or
Section 2, below), there is a convergent subsequence, say Ju, —F*. Applying
the algorithm to f*, we obtain a sequence f . Since the operations in the
algorithm are continuous, f} = lim, Jn4m . Hence | faka — 5l =
limyl{ 5, sm41 — fsm |l = 0. By Lemma 1.3 (apphed to f ) we have 7} <
T — 0,m = 2,3,... . By induction, this Ieads to 0 << 7 < 7 — (m — 1)6,
whence 8 = 0. [

If fis fixed, we define operators 4 and B by putting
AF = M(f —F),  BF = M(f—F).
From Lemma 1.1 we have immediately:

Lemma 1.5.

| Ad — Al <l ¢ — ¢l
| B — B < é— il
| ABp — ABS (| < |l b — I

THEOREM 1.1. The sequence {f,} produced by the Diliberto-Straus algo-
rithm converges uniformly.

Proof. Let G, =Y g;and H, = Y1 h; . Then

G, = G n1 T 8n = Gy + '/%yfzn—l = Gpq + f//zy(f'_ Gn—l — Hn—l)
= y(f Hn—l) = BHn—l .

Similarly, H, = AG, . Hence H, = ABH, , .

Select g and A so that f — g — his level (see [3, Theorem 7] or Theorem 2.3,
below). Then O = A{(f — g — h) = Ag — h, so h = Ag. Similarly, g = Bh.
Hence A = ABh. Since | H, — h|| = || ABH,_, — ABh|| < | H,-; — k| by
Lemma 1.5, we see by induction that the sequence {H,} is bounded. It is
equicontinuous, as shown in [3, Theorem 4] or by the argument in Theorem
2.3 of this paper. Hence by the Ascoli theorem, there is a convergent sub-
sequence, say H, — H.

Since G, = BH,,_, , we see that G, ., converges, say to G. Since g, — 0
[3, Theorem 6] we conclude that G, — G. It follows that the sequence
JSonga = — Gy nk converges to f G — H. As in [3, Theorem 7],
f—G—His level As in the argument above for 1, ABH = H. By repeating
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another argument used above, | H, — H|| <|| H,.; — H|. This means
that the sequence {H,} can have no cluster point other than H. Hence
H,—H, G,—~ G, and fy.qy—>f— G — H. Then f;, >f— G — H and
Jfo—m>f—G—H §

2. Ngw Proors oF Two THEOREMS OF DILIBERTO AND STRAUS

It is convenient to term a function f horizontally level if #,f = 0, vertically
level it M, f = 0, and simply level if M, f = M, = 0. The elements f,, in the
algorithm are vertically level since &, f5, = M, fon1— 8n) = Myfons—&n =
0. Similarly #,f5,., = 0. The following two lemmas can be found in [4].
Proofs are included here because of their brevity.

LemmaA 2.1 [Golomb [4]]. If #,f =0 and ge C(X), then | f+ gl =
1f—egli

Proof. Select p = (x,, y;) so that (f+ g}p) =clf+gl, o= +L
Since fis vertically level, there is a point ¢ == (x,, y;) such that o[f(p) +

F@1<0. Then |f—gll = olglg) — f(@)] = og(p) — of (q) = olg(p) +
f(p)] =1+ gl. Apply the argument to —g in order to get || f+ g| =
If—gi- B

LemMA 2.2 [Golomb [41l. For all n, | f, — 2fuis | = | fis Il

Proof. If n =2k — 1 then by Lemma 2.1, ||/, — 2fnu1ll = I fopoz —

Jor — fal =11 &6 — far |l = 11 g + far || = | far—1|l. The proof for even n is
similar. J

Lemma 2.3, Forn =2, gnll < 3l fonzll and || by |} < $ 1 fona |-
Proof. By Lemma 2.2, || f,, — 2fp4q || < | fo ||, whence

If n = 2k, we apply 4, to each term in this inequality and use the mono-
tonicity of .#, , obtaining

'/fzyfzk - ”f:% ” < zﬂ'y 2k4+1 < e/lyf'zk + Hfzk H
Since fy; is vertically level, ., fy;, = 0, and the previous inequality reduces to

— 1 for | < 28500 <l for Il

The proof of the other inequality is similar. §



310 LIGHT AND CHENEY

LemMA 2.4, Ifn > N then 2fp — [ fx || <foa <26 + vl
Progf. By Lemma 2.2 and the monotonicity of || £, I,

[ foms — 2fnll = I faall < I fx -
Hence ‘
~| x| < fox— 20 < Snll

and

o — Il <foa <20+ Snl- 1

Lemma 2.5 [5, Lemma 2.2). If f differs from a vertically level function
by a function of y alone then max,[f(x,, y) — [(xs, ¥)] = O for all x, and x, .

An ordered set of points [py, ps,...] in X X Y is called a path if p; =
(s> i)s Xas-1 = Xai » Veiqa = Vai [OF Xoppya = Xa; a0d yp; 3 = yy]. If the path
is finite, if it has an even number of terms, say [Py, Ps . Paq), and if yy =
Yan » We call it a closed path, I. (We do not assume that the points p, are
distinct.) Corresponding to / there is a linear functional 7; defined by

12’n

() = 5 & (1D,

The principal properties of these functionals, as established by Diliberto and
Straus, are these:
THEOREM. (1) mi(¢) = O for all ¢ M.
@ lIml<L
(3 dist(f; M) = sup, m(f).

Although most of the results of this paper are valid for arbitrary compacta
X and Y, it is convenient to retain the terminology of R2 For example,
“p — q is horizontal” means that p = (X, , ¥,) and g = (xy, yo).

THrOREM 2.1. For any two integers N =2 and k > 1,

; i 2 distCf; M) = | forll — 2501 fll — | sz .

Thus it follows immediately that lim || fiy || = dist(f, M).

Proof. Fix Nand k, and letn = N -+ k. It is convenient but not necessary
to assume that z is even. Then £, is vertically level. Hence there exist points
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P, and ¢, such that p, —.g, is vertical and f,(po) = —fuldo) =l /nl. B
Lemma 2.4,

Ju-1(po) = 2fulpe) — I fxll = 211410 — I/l
Soa1(qo) <2fa(ge) + 1wl = =201l + 1 full

Since f,; is horizontally level, there exist points p, and ¢, such that p; — ¢;
is horizontal, g, — p, is horizontal, and

fn—l(pl) 2 ”f'n l - ”fN ”a
fn—l(ql) < -2 ”fn] + “fN ]
We shall prove by induction that the following assertion, A(r), is true for
r=1,2,..,k

A(r): There exist points py, p1s Ps s, Dy and o, gy 5-.., ¢, forming a path
such that

Jorpd) 2 2701l - @ - Dlfwll and foo(g) < 271/l + @ =D

The preceding remarks have established A(1). Now suppose that 4(r) has
been established for a particular rin {1, 2,..., £ — 1}. In proving A + 1), wé
suppose first that r is even. Then n — r — 1 is odd and £,.,; is horizontally
level. Select p,., so that p,.; — g, is horizontal and f,,_, {pri1) = Frnrald.)-
By Lemma 2.4 and the induction hypothesis, A(r), we have

Jrn-ra(Pri1) = Sora(qr) = 2fn-(@) =1 S|l
= 227 full + @ =Dl =1l =277 Ll - QP = D Sy
The choice and analysis of g, is similar. For indices i = 0, 1,..., r we have
by Lemma 2.4 and the induction hypothesis
Jora(p) Z 20 (pd) — 1 Sl

=227 full = @ = DI =l Ax ]

=2 fu ll — @ — DI Ax Il
A similar analysis applies to the points g; . If  is odd, a similar proof can be
given.

Thus A(r) is true for r = k, andjthere exist points pg ..., Prs Go se-es Tr

such that fy(ps) = 2% || full — @2F — D lIfn Il =l /x | — 25(I /|| — I fz ) and
similarly for ¢; . Now complete a closed path by constructing p;.; and g

in such a way that f(Prrd) = fv(@rey)- This is possible by Lemma 2.5. Then
we have

dist(f; M) = mfi) = g 1 2 (0 — @) + fpssn) = e

> 2082 1wl — 20~ 153
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CoroLLARY 2.1. §dist(f; M) = 2|[fual — I full, fn = 2.

THEOREM 2.2. If the Diliberto-Straus algorithm is applied on a domain
which is a subset of X X Y'then forn =2 and k > 1,

sty M) = 5 (1]l = 20l — o DY = g 1l

Hence dist(f, M) = lim,,., || /5 I

Proof. In the proof of the preceding theorem, the only change to be made
is at the end. Lemma 2.5 is not applicable, but the path can be completed by
any two convenient points p;.; and g, . In the estimate, use

SPed) — F(@er) = =21l N

LemMA 2.6 [S]. For functions of one variable, the averaging operator
Mf =% sup f(x) + % inf f(x) has these properties:
D v <lvl,
Q@ | Mo, — Moy | <oy — 03],
3 llo— | =|v|—|Av|

DeriniTioNs.  Fixing fe C(X X Y), we define mappings 4, B, and S on M
as follows:
(V) A¢ = ML/~ $),
() Bg =M(f— ),
(B) S¢p =¢+ A¢+ B($ + Ap).
We define also

ACey , 15 X2, Y2) = sup [ fCx, 1) — FOx, )| + sup [ £, ¥) — ez, Y,

K={¢peM:|f— Il <Ifl,I Ay, yD) — blxa, y2)l < Ay, y1, Xa, Vo))

A standard compactness argument shows that {f(x, ): xe X} and
{f (-, ¥): y € Y}are equicontinuous sets in C(¥) and C(X), respectively. Hence
4 can be made as small as we wish by restricting (x, , y,) to a neighborhood

of (xy, 3y)-

THEOREM 2.3. The set K is nonempty, convex, and compact. The map S is
continuous and carries K into K. Hence S has fixed poinis in K. If ¢ is any
Jixed point of S in M then € K, f— ¢ is level, and || f — ¢ || == dist(f, M).
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Proof. The maps A, B, S are continuous by Lemma 2.6. For any ¢ € M,
we have by Lemma 2.6,

If—Spll =Ilf — ¢ — Adp — M,(f — ¢ — 4P|
~¢— APl =I|if— ¢ — Mf— Sl
<If— ¢l

This shows that if ¢ € K then || f— Sé || < 1.
If $(x, ») = g(x) + A(y), then
S =g+ h+ M —g—h) -+ B(d+ AP)
= g+ Ag + B(g + Ag)
= Ag + BAg.

Now let ¢ € M and u = S¢. If d(x, ¥) = g{x) + A(»), then by Lemma 2.6,

P ulxy 5 1) — u(xy 5 o)l
= |(4g)xy , y1) — (AQ)(xs, o) -+ (BAG)xy , y1) — (BAgKx2» 1)l
= [(Ag)(y1) — (Ag)(y2) + (BAg)(xy) — (BAg)(xp)|
S M — 8 y) — M f— N1
+ | M(f — Ag)(xy) — M(f — AZ)(xy)]
< sup = 8)x, y) — (f — £, ya)l
+ sup |(f — Ag)(xy, ¥) — (f — Ag)(x,, y)l
— sup [ 06,3 — f5 79 + 509 |15 2) = 1 )

This completes the proof that S carries X into X.

For the convexity of X, let ¢, and ¢, belong to K, and let 0 <A < 1
Put ¢ = A, + (1 — A) ¢, . Then clearly, | f— ¢ | < ||f|. To show that
Ld(xy, 1) — 0o, ¥l < A(xy, y1, Xa, yo) We compute as follows, with

P = (xy, y)and g = (x, yo):

B(p) — Ml = | Ady(P) + (1 — A) do(p) — Adi(q) — (1 — A) ¢o(g)l
< A di(p) — dulg)] + (0 — A da(p) — @)l
<M+ A =04 =40, 31, X5 Vo).

A simple argument shows that M is a closed subspace. We have proved
that X is bounded and equicontinuous. In order to prove K closed, let
¢, € K with ¢, — ¢. (Pointwise convergence suffices.} The two conditxons
for membership in K are then obviously satisfied by ¢.
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By the Ascoli theorem, K is compact. By the Schauder Fixed-Point
Theorem, S has a fixed point in K.

Let ¢ be a fixed point of S'in M. Then A¢ + B(¢ + A¢) = 0. Since A is
a function of y alone and B(¢ + 4¢) is a function of x alone, we have
A¢ = ¢ and B(¢ + A$) = —c for some constant c. It follows that —c =
B(¢ + Ad) = B(¢ + ¢) = —c -+ B(¢). Hence 0 = B($) = M,(f — ¢). The
equation AL f — ¢) = A¢d = 0 follows from Lemma 2.7 (below). Hence
f— ¢islevel, and || f — ¢ )| = dist(f, M). |

LemMa 2.7. If M f =0 and M,f = ¢, then ¢ = 0.
Proof. By Lemma 2.6, ‘

1Al =1f—ec—Maf+c|
=|(f—¢)—Mf— Ol <|f—cl =|f—Af]
= max {max | f(x, )] — (1))} =1/l —Tcl K

Remark. If ¢ is a discontinuous function of the form A(y) + g(x), then
S¢é is a continuous function satisfying || f — Sé || <||f— . Hence, as
pointed out by Diliberto and Straus, the approximation of a continuous f
cannot be improved by allowing discontinuous g(x) + A(y).

Remark. The mapping S is defined so that if f;, = f — ¢ then fon., =
f—S¢.
 Remark. The fixed-point theorem is not necessary in proving the exis-
tence of a best approximation to fin M. Once S has been proved to have the
properties || f— Sé || <||f— ¢ and S(K) C K, the existence follows from
compactness of K and continuity of [|f— ¢ |l The fixed-point argument
produces a best approximation ¢ such that f — ¢ is level, a stronger resulit.

3. SPECIAL RESULTS IN THE DISCRETE CASE

Our objective here is to investigate the structure of the set of best approxima-
tions when X and Y are finite sets. A unicity theorem for best approximations
is one by-product. Insofar as possible, definitions and results are given for
general X and Y.

DerNITION 3.1.  An extremal path for a function f is a closed path /
such that 7(f) = dist(#; M). (Recall that the inequality < is always valid
here.) The union of all extremal paths for £, considered simply as sets, will be
denoted by E(f). The following lemma is from [5].
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Lemva 3.1. IF|fll =If+ ¢l = dist(f; M) then ¢(p) = 0 for p € E(f).
(Here ¢ M)

DeriviTioN 3.2, The null points belonging to fare the elements of the set
A = V{Z($): peMand | f* + ¢ = f*]}

where f* is chosen so that f* — fe M and || f*| = dist(f;, M), and Z(¢)
denotes the set {p: ¢(p) =0, pe X X Y} (The null points are points where
any two best approximations of f must agree.)

LemMA 3.2.  The definition of null points is independent of the choice of f*.

Proof. Let f'—feM, |f || =dist(f, M) =r, and peZ():
If*+ ¢li=rkIf|f" + S|l =r then

r=f el =0+ ~f+ dl=15*+ ¢ — I

Hence (f' —f*+ @)(p) =(f"—f*)p) =0 and ¢(p) =0. Thus pe
MZ(P):f + ¢l =1k |

Lemma 3.3, If f—f'€M then f and f' have the same null points and
extremal paths.

Proof. If f— f' e M then w{f) =m(f") for all closed paths I Also,
dist(f, M) = dist(f’, M). Hence the extremal paths are the same. If f * - fe M
and dist(f, M) = || f*{, then f* — f' € M and dist(f’, M) = ||/ *|. By the
preceding lemma, fand /' have the same null pcints. §

THEOREM 3.1. Let X and Y be finite. To each function f defined on X x Y.
there corresponds a functionf * such that f* — fe M, f* is level, and crit(f*) =
E(f) (i.e., each critical point of f* is on an extremal path of 1) crit f =
{p: 1 /(P! =71

Proof. By Theorem 3.2 of [3] there exists an f’ such that /' — fe M,
crit(f") = E(f), and || f' || = dist(f, M). Let f" = f, be the starting point of
the Diliberto-Straus algorithm. Let £ * be the limit of the generated sequence
{fr}. Thenf* — fe M and f* is level. It remains to be shown that crit(f *} =
E(f).

Let X; and Y, denote, respectively, the projections of E onto the X and ¥
sets. Put X, = X\X; and Y, = Y\Y; . Let ¢ denote the maximum of | f'( pj|
on the set L = (X X Yy U (X, X Y). Since crit(f)YC X; X ¥;, we have
c<|f"I
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We now prove that for n 2 1, fony =f on Xy X Yy and | foon | <c
on L. Since the step from f; to f; is just like the step from f;, , 10 /o1, WE
need to consider f; only.

By the definitions of X; and g;,, gy =0 on X; and f, =/ on X; x Y.
Likewise #, = 0 on Y; and f3 =f, on X x ¥;. Consequently f; =f" on
Xy x Yy

Now let p = (x, , y,). Using Lemma 2.6, we obtain the following.

() If pe Xy X Ythen | fo(p)| < max, lfz(xo,y)l max, | /(%o , ¥)| <
(2) If pe Xy X Y, then | fu(p)] = | A(p)] <

(3) By (1) and (2), if pe X X ¥, then [fz(p)l <ec

(4) By (1), if pe Xp X Yy then | fi(p)l = [ fp)l < ¢

(5) By(3),ifpe X X Y,ythen |fy(p)] < max, | f5(x, po)l < max, | folx, yo)l <
C. :

LemMA 3.4. Let Q be a subset of X X Y such that
(5 ) €0, 1) €0, () eQ] = (x, ) e Q.

Then there exist pairwise disjoint families X,C X and Y,CY such that
0 =U. (X, X Yo).

Proof. Put X, ={xcX:(x,y)¢Qforal yeY}
Yo={yeY:(x,y)¢ 0 forall xe X}.

On X\X, we introduce an equivalence relation ~ by putting x; ~ x, if and
only if there is a y € Y such that (x;, ) € Q and (x;, y) € 0. Let {X,} be the
family of equivalence classes determined by this relation. Define

Y, *{er(x,y)eQ for all xe X,}.

We prove that the Y, are pairwise disjoint. Suppose that ye ¥, N Y;.
Then (x,y)eQ for all xeX, U X,. Take x,e€X, and x;€ X;. Then
(x,,y)e Qand (x5, y) € O. Hence x, ~ xz and X, = X, .

We prove that Q D J, (X, x Y,). Let (£, ) € X, X Y, . By the definition
of ¥,, (x, n) € Q for all x € X, . Hence in particular (£, n) € Q.

We prove that QC ), (X, X Y,). Let (£, 7)€ Q. Then {e X\X, and:
¢ e X, for some «. Let x be an arbitrary element of X, . Then ¢ ~ x. Hence
there is a y € ¥ such that (x, y) € Q and (¢, y) € Q. By the hypothesis on Q,
(x, n) € Q. This shows that (x, n) € Q for all x € X,,, and that 5 € ¥, . Hence
¢EneXx,xY,. K

LeMMA 3.5. Let X and Y be discrete spaces, and let S be a subset of X X Y
such that when three vertices of a rectangle belong to S so does the fourth.
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Let pe(X X Y\S. Then there is a function ¢(x, y) = g(x) + h(y) such that
¢S =0and $(p) = 1.

Proof. By Lemma 3.4, there exist sets X, and Y, such that

X=Xuvlx,, Y=Y,vulyv,,
S = (X, X Yo

Let p = (x,, yo)- If x5 Xp, we let g(xp) = 1 and let g(x) = 0 for all other
x € X. Let 2z = 0. Then this g -+ /4 has the desired properties.

If xy ¢ Xy, then x,€ Xz for some B. Since pé S, yo¢ ¥y Letg| Xz =1=
—Hh | Y and let g vanish on all the other component sets of X. Let 4 vanish
on all the other component sets of Y. This g + % has the desired proper-
ties. B

THeOREM 3.2. If X and Y are finite sets then the set of null points of f'is the
smallest set S having these properties:

(1) S contains every extremal path for f; i.e., SO E(f).

(2) If S contains three vertices of a rectangle, then it contains the fourth.

Proof. By Lemma 3.3 and Theorem 3.1, there is no loss of generality in
assuming that f'is level, and crit(f) = E(f). We begin by showing that N{(f),
the set of null points, has properties (1) and (2). Let ¢ M and | f+ ¢ =
I/ By Lemma 3.1, ¢ vanishes on E(f). Since this is true for every such ¢,
E(f) C N(f). This is (1). Now suppose that p; ,..., p, are the vertices of a
rectangle and that p, , p, , p; belong to N. Then ¢(py) = ¢(p,) = &(ps) = 0.
If 7 is the closed path made from p, ,..., p, then m(¢) = 0, and therefore
&(py = 0. Again, this is true for all such ¢, and so p, € N(f). This is (2).

In the second half of the proof we show that N is contained in any set S
having properties (1) and (2). Let p ¢ S. By Lemma 3.5, there exists ¢ & M
such that ¢ | S = 0 and ¢(p) 5= 0. Since crit(f) C 8, ¢ vanishes on crit(f).
Hence an « > 0 exists for which || f + e || = || f|. Since ¢(p) # 0, p is not
a null point. Thus the complement of S is contained in the complement
of N. |

THEOREM 3.3. Let Q be a subset of X X Y such that when three vertices
of a rectangle belong to Q so does the fourth. If the sets Xy and Y, of Lemma 3.4

are finite, and if there are only finitely many equivalence ciasses X, say k, then

dim{pe M: ¢ | Q =0} = #X, + #Yy +k— 1.
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Proof. Select k arbitrary numbers «, ,..., o and define g(x) = —A(y) =
o if (%, ) e X; X ¥y, 1 <7< k. Letgand 4 be defined arbitrarily on X, and
Y, , respectively. Put ¢(x, ¥) + h(p). Obviously, de M. If (x, p) e X; X ¥;
then ¢(x, y) = g(x) + A(y) = 0. Hence ¢ | Q = 0. Since ¢ is not changed
if a constant is added to g and subtracted from 7%, the dimension of the set in
question is at least m = #X, + #Yo+ k — 1.

On the other hand, if ¢(x, y) = g(x) 4+ A(y) and ¢ | Q =0, then g(x) +
Ay) =0 when (x, y)eX; X ¥;. Hence g(x) is a constant «; on X; and
h(y) = —a; . Thus a set of m functions ¢ can be constructed, taking only
values 0 and 1, to span {¢: ¢ | Q = 0}. Hence the dimension of this set is
no greater than m. J

LemMA 3.6. Let f be a function on X X Y, X and Y being finite sets. Let
Q be the set of null points (Definition 3.2). Let Xy U X1V U X, and
Yo U Yy U - U Y, be the decompositions of X and Y described in Lemma 3.4,
relative to the set Q. Then

dim{¢ € M: [ f+ ¢ |l = dist(f, M)} = #X, + #Yo+k — 1.

Proof. By Lemma 3.3 and Theorem 3.1, there is no loss of generality in
assuming that || f|| = dist(f, M) and crit(f) = E(f). By Theorem 3.2, Q
satisfies the hypotheses of Lemma 3.4. By the definition of Q, ¢ |Q =0
whenever || f -+ ¢ ) = || f1I. Thus the set whose dimension we wish to compute
is a subset of {¢ € M: ¢ | @ = 0}, and by Theorem 3.3 the former has dimen-
sion at most m = #X, + #Y, + k — 1.

On the other hand, if ¢ € M and ¢ | Q = 0, then because the domain is
discrete and crit(f) C Q, we can determine an € - 0 for which [| f -+ ed || =
ILf1l. Thus the dimension to be computed is at least m. [

THEOREM 3.4. Let X and Y be finite sets. A jfunction fon X X Y has a
unique best approximation in M if and only if every point of X X Y is a null
point of f.

Proof. By the preceding lemma, unicity of the best approximation occurs
exactly when #X,-+ #Y,+k—1=0. Since k=1, #X,>=0, and
#Y, > 0, the condition is that k£ =1, #X, =0, and #Y, = 0. Hence X
and Y, are void. §

The matrix formulation of Lemma 3.4 is as follows.
LemMA 3.7. Let A be a matrix of O’s and 1’s such that whenever three 0’s

are vertices of a rectangular pattern, the fourth vertex is also a zero. Then by
row and column permutations A can be put into the block form
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J

Y,

V)

where the shaded area is occupied soiely by O’s and the unshaded area is occupied
solely by 1’s.

Proof. By row and column interchanges, the rows and columns consisting
entirely of 1’s are moved to the top and left. Let these rows and columas be
described by the inequalities 1 <{i < n, I <j < m. In the next step permuta-
tions involving only indices i > n and j > m are performed to obtain a
maximal rectangle of 0’s in the upper left-hand position of the sub-matrix.
Let this rectangle be described by n << i << p,m <j < ¢. Ifthere is an element
a,, = 0 with n <<v < p and p > ¢, then by the hypothesis on 4, we would
have a;, = 0 for n << i < p. An interchange of column g with column g + 1
would enlarge the maximal rectangle of 0°s. In this way we show that elements
to the right of and below 0-blocks are all 1’s. The proof is completed by
repetition of this process. |

4, SPECIAL PROBLEMS ON FINITE DOMAINS

Here a special case of the Diliberto-Straus algorithm is considered—one
in which the generally nonlinear process becomes linear. The approximation
problem on any Cartesian product of finite sets can always be solved by a
finite sequence of the linear problems discussed here.

Assume that C and Y are two finite sets, each containing exactly » pomts
The domain, D, of our functions is a subset of X x Y having these properties:

(1) The points of D can be labelled in such a way that the result is a path:

= [pl > P2 sy Pzn] (n =#X = #Y)

(2) Each horizontal or vertical line of X' X Y contains exactly two points
of D.

We can assume the labelling of D is chosen so that p; = (x;, y5), %0 = Xp5.4»
Yai = Vai1, and Xxg, = X; .

Now let f be any function defined on D. We intend to subtract from fa
function ¢(x, ¥) = g(x) + A(y) so that f — ¢ is level on D. This will produce
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the best approximation ¢ at once. The “levelling equations” are (for

1 <ig<n
F(P2) — 8(P2s) — M(P2i) + f(Poire) — &(Paist) — M(Paiy) = 0
F(Paia) — 8(P2is) — H(Paia) + F(P2:) — 8(P2i) — F(pas) =0

In these equations P,,., = p; . With the abbreviations

u; = g(p2s) = &(P2iss)s
v; = h(pa) = M(pais)s
2b; = f(paisd) + f(P20)s
2¢; = f(p2s) + f(P2s-0)

the system (3) can be written in the form

u; + §(; -+ v40) = b;,
v; + %(ui—l -+ ui) = C;.

In matrix form this is

(5 )02 = [

®)

)

with b; =1if (0 <j—i<1)or  =nandj=1), and b; = 0 otherwise.
Now it is necessary to prove that the following matrix is of rank n» — 1.

2 -1 0 00 - 0 —I
—1 2 -1 00 - 0 0
A=} 0 -1 2 —1 0 «~ 0 0
1 0 0 00 - —1 2

Since any constant vector is in the null space of 4, the rank of 4 is at most
n — 1. We will show that the (n — 1) X (n — 1) matrix A4° obtained from A
by removing the last row and column is nonsingular. Suppose that z =

(z1 5..-» Zn-1) and that z4° = 0. This system of equations is
2z, — z3 =0,
—2; + 22543 — Zse = 0, I1<i<n—3
—Zpg + 2244 =0,

These equations can be employed one-by-one to express each z; in terms of
7y , the result being z; = iz; (1 << i <{n — 1). The last equation then states
that —(n — 2) z; + 2(n — 1) z; = 0, whence z; = 0. Hence z =0 and A4°

is nonsingular.
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The equation
I Oyl B I B
L& e 1=l 4l
implies that the second factor has rank 2n — 1. The vector B = [1,..., 1,
—1,..., —1]is orthogonal to its columns. In order to prove that system (4) is

consistent, it suffices to prove that f is orthogonal to [, ¢JF. The required
calculation is

2be— Y e =3 [ (Dain) + f(22)] — 32 [f (P2 + f(P2-)] = 0. |

TurOReM 4.1. The best-approximation operator for the domain D is
linear, and the linear system of equations (4) which determines the best approxi-
mation is consistent.

Of course, the consistency of the system of equations also follows from an
existence theorem for the ¢ such that f — ¢ is level.

The foregoing analysis can be used to compute the best approximation in
one step on any domain D having the property that every horizontal or
vertical line through a point of D contains exactly one other point of D. In
this case, D can be decomposed into a disjoint union of paths on each of
which f — ¢ can be made level by solving linear equations.

The formal way of decomposing D is to define an equivalence relation
p ~ ¢ to mean that p can be joined to ¢ by a polygonal line whose vertices
are in D and whose line segments are alternately horizontal and vertical. The
equivalence classes give the decomposition D = {J D;. This can be done
whether X and Y are finite or infinite sets. If M(D) denotes the space of
functions ¢(x, y) = g(x) + A(y) on D, we have

THEOREM 4.2. Corresponding to the decomposition D =) D,;, M(D)
has the direct-sum decomposition

M(D) =}, OM(D)).

Here it is understood that if ¢ =3 ¢; with ¢, € M(D,) then $(p) = d{p) if
p € D; . Furthermore, || ¢ |l = sup; || ¢ |l -

Proof. If de M, let ¢i(p) = ¢(p) on D; and ¢(p) =0 elsewhere.
Obviously ¢ = > ¢, . If ¢, € M(D,) then ¢; = ¢ | D, for some ¢ € M. Then
<;5i 1 -Dz = ((?S [ Dj) 1 Dz = O by diSjOintneSS Of D‘L and Dy' . ‘

Reference [6] came to our attention after we completed our work. It
contains another proof of convergence of the Diliberto-Straus algorithm.
References [1, 7] contain an abstract account of algorithms having the form
of the Diliberto—Straus algorithm.

640[29/4-5
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