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INTRODUCTlO1'\

The approximation problem considered here is to represent or approximate
a prescribed continuous and real-valued function of two variables by the sum
of two continuous functions of one variable:

f(x, y) R:! g(x) i- hey)·

To make the problem more precise, let X and Y be compact topological
spaces, and Ietfl= C(X X Y). Denote by M the set of functions 4> which have
the form

cP(x. y) = g(x) . i- hey)

The distance from f to M is defined by

g E C(X), h c: C( Y).

dist(f, M) .= inf iiI - cP ii·=c inf sup! l(x, y) - cP(x, y)!.
,""M ,"EM (x"ll

An element ep E M is sought such that U - cP Ii -- dist(f, M). Such a 1> is
termed a best approximation to/ Alternatively, one asks [or anf* c C(X X Y)
such thatf"- fE M and ilf* ,: is a minimum, i.e., 'If":: ... c dist(f, :'1'1).
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In 1951, Diliberto and Straus published in [3] an algorithm for solving this
problem, and in [4], Golomb has shown that a generalized form of this
algorithm is applicable in any normed linear space. The procedure of [3] is
most easily explained in terms of two non-linear averaging operators defined
by the equations

(Axf)(y) = t supj(x,y) + t infj(x,y),
x x

(A lI f)(x) = t supj(x, y) + t infj(x, y).
11 11

The algorithm is then simply

It =f, hn =hn-l - gn, hn+1 =hn - hn ,

gn = A lIhn-l, hn = A xf2n .

One of the principal results of [3] can be summarized thus:

THEOREM. The sequence {fn} is equicontinuous andpossesses cluster points.
Each cluster point 1* is a solution to the problem: f* - IE M and /If* /I =
dist(j, M). Furthermore, Axf* = A lIf* = 0, /lIn /I ~ dist(j, M), and
/lln-l - In /I ~ o.

1. CONVERGENCE OF FUNCTIONS IN THE ALGORITHM

One of the questions left unanswered in [3J is whether the sequence {In}
converges. This was answered affirmatively by Aumann in [2]. We give a new
proof of this result in Theorem 1.1 below.

LEMMA 1.1. IIAxf - A"FII :;( III - FII. Similarly for A y •

Proof Let 0 = III - F /I. Then we have the pointwise inequality

-0 +F:;(/~0 +F.

Since Ax is order-preserving, and constant-preserving,

This is equivalent to the inequality in the lemma. I
In the following three lemmas we give some of Aumann's results [2].

Proofs are included for completeness.
The following lemma is elementary.
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LEMMA 1.2. For two functions f and F,

maxf(x) - maxF(x) :s:; max{f(x) -F(x)}

307

with equality holding only if there exists· a point at which all three maxima are
attained.

LEMMA 1.3. [Aumann, [2]]. Let Tn denote the maximum of Ifn(P) I as p
ranges over points satisfying Ifn+1(P) - fn(P) I = Ilfn+l - fn il· lfllfn+l -fn" =
Ilfn - fn-l!1 then Tn-l ~ Tn + IIfn -fn-III·

Proof We suppose n = 2k; the case when n is odd is similar. Using
Lemma 1.1 and the fact that .Jlx f2k-l = 0, we have

By the definition of T2k there exists Yo such that

and

Since !I hk II = II gk II by hypothesis, one of the following holds:

(i) (.4xf27C - .Jlxf2k-J( Yo) = II gk II,

(ii) (.Jl"};k - .Jlxf2k-l(YO) = -II gk II.

Suppose (i) holds. Then rewrite (i) in the forms

Umaxf2ix, Yo) - maxf2k_l(X, Yo)]
x x

Umaxf2k(x, Yo) - maxf2k_l(X, Yo)]
x x

+ t[max -f2k-l(X, Yo) - max -f2k(X, Yo)] = II gk Ii·
x x

By Lemma 1.2, each bracketed expression is at most II glc II, and hence by the
equality condition of Lemma 1.2, there exists an Xo such that -gk(XO) =
II gk II, f2k(XO' Yo) = maxX f2k(X, Yo), and f2k-l(XO, Yo) = maxxI 2k_l(x, Yo)·
From the definition of gk , gk(XO) = t maxy f27C-l(XO , y) + t miny f27H(xo, y)
whence

~ -2gixo) + f2k-l(XO , Yo) = -gixo) + f2k(XO , Yo)

= II gk I! + T2k .

Case (ii) is similar. I
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LEMMA 1.4 [Aumann, 2]. In the Diliberto-Straus algorithm, we have
gn -.. 0 and hn -.. O.

Proof Diliberto and Straus [3] stated that /I g2/1 ?: /I h2 /1 ?: II g311 ?: ....
One proves this easily by Eq. (1) in the previous proof.
Thus we can define 8 = limllln+1 - In II. Because of equicontinuity (see [3] or
Section 2, below), there is a convergent subsequence, say In -..f*. Applying

k

the algorithm to f*, we obtain a sequence f;;; . Since the operations in the
algorithm are continuous, f;;; = IimlJnk+m' Hence /I f::+l - f;;; /I =
limkil/n +m+l - In +m /I = 8. By Lemma 1.3 (applied to f;;;) we have r;;; .:::;;;

k k

r;;;+1 - 8,m = 2, 3,.... By induction, this leads to 0 ~ r;;; ~ rt - (m - 1)8,
whence 8 = o. I

Iff is fixed, we define operators A and B by putting

AF=Aif-F),

From Lemma 1.1 we have immediately:

LEMMA 1.5.

BF = Alf - F).

II Ar,b - Alji II ~ II r,b - lji II,
IIBr,b - Bljill ~ II r,b -ljill,

/lABr,b - ABljil1 ~ II r,b -ljill·

THEOREM 1.1. The sequence {fn} produced by the Diliberto-Straus algo­
rithm converges uniformly.

Proof Let Gn = L~ gi and H n = L~ hi' Then

Gn = Gn- 1 + gn = Gn- 1 + A Yhn- 1 = Gn- 1 + Alf - Gn- 1 - H n- 1)

= Aif - H n - 1) = BHn _ 1 .

Similarly, H n = AGn . Hence H n = ABHn_1 •

Select g and h so thatl - g - h is level (see [3, Theorem 7J or Theorem 2.3,
below). Then 0 = Aif - g - h) = Ag - h, so h = Ag. Similarly, g = Bh.
Hence h = ABh. Since II H n - h II = II ABHn_1 - ABh /I ~ II H n- 1 - h II by
Lemma 1.5, we see by induction that the sequence {Hn} is bounded. It is
equicontinuous, as shown in [3, Theorem 4] or by the argument in Theorem
2.3 of this paper. Hence by the Ascoli theorem, there is a convergent sub­
sequence, say H nk -.. H.

Since Gn = BHn_1 , we see that Gnk+l converges, say to G. Since gn -.. 0
[3, Theorem 6] we conclude that Gnk -.. G. It follows that the sequence

hnk+l = f - Gnk - H nk converges to 1- G - H. As in [3, Theorem 7J,
1- G - H is level. As in the argument above for h, ABH = H. By repeating
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another argument used above, II Hn - H II ~ 1\ Hn-1 - H II. This means
that the sequence {Hnl can have no cluster point other than H. Hence
H n -* H, Gn -* G, andf2n+1 -*1- G - H. Then I2n -*1- G - Hand
fn -* f - G - H. I

2. NEW PROOFS OF Two THEOREMS OF DILIBERTO AND STRAUS

It is convenient to term a functionfhorizontally level if Jltxf = 0, vertically
level if Jltyf = 0, and simply level if Jltxf = Jltyf = O. The elementshn in the
algorithm are vertically level since JltyI2n = Jltif2n-l - gn) = Jltyf2n-l - gn =
0. Similarly Jltxf2n+1 = 0. The following two lemmas can be found in [4].
Proofs are included here because of their brevity.

LEMMA 2.1 [Golomb [4]]. If Jltyf = 0 and g E C(X), then 111+ gil =

Ilf-gll·

Proof Select p = (xo, Yo) so that (f+ g)(p) = a III+ g II, a = ±l.
Since f is vertically level, there is a point q = (xo, Yl) such that a[f(p) +
f(q)] ~ 0. Then Ilf - g II ~ a[g(q) - f(q)] = ag(p)- of(q) ~ a[g(p) +
f(p)J = iif+ gil· Apply the argument to -g in order to get [If + g Ii ~
Ilf-gil. I

LEMMA 2.2 [Golomb [4]]. For all n, Ilfn - 2fn+1 Ii = ilfn II.

Proof If n = 2k - 1 then by Lemma 2.1, Ilfn - 2In+111 = IIf21H ­
Ale - f2k II = II gk - hk II = II gk + f2k II = Ilf2k-1 II· The proof for even n is
similar. I

LEMMA 2.3. For n ~ 2, II gn II ~ t Ilf2n-211 and II hn II <; t Ilf2n-111.

Proof By Lemma 2.2, Ilfn - 2In+1 II ~ lifn II, whence

In -llfn II <; 2fn+! ~fn + Ilfn II·

If n = 2k, we apply Jlty to each term in this inequality and use the mono­
tonicity of Jlty , obtaining

Since f27' is vertically level, Jltyf2k = 0, and the previous inequality reduces to

The proof of the other inequality is similar. I
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LEMMA 2.4. Ifn > N then2fn -lIfN II ~fn-1 ~ 2fn + IIIN II.

Proof By Lemma 2.2 and the monotonicity of 11/10 II,

IIfn-1 - 2110 II = 11/10-111 ~ IIfN II·

Hence

-lIfN II ~ fn-1 - 2fn ~ IIIN II

and

2fn -lIfN II ~fn-1 ~ 2fn + IIfN II· I

LEMMA 2.5 (5, Lemma 2.2]. If I differs from a vertically levellunction
by afunction olyalone then maxy [f(x1 , y) - f(x2 , y)] ;;:, Ofor all Xl and X2 .

An ordered set of points [PI' P2 ,...] in X X Y is called a path if Pi =
(Xi' Yi), X 2i-1 = X 2i , Y2i+1 = Y2i [or X2i+1 = X2i and Y2i-1 = Y2i]' If the path
is finite, if it has an even number of terms, say [PI' P2 ,.. " P2n], and ifYl =
Y2n, we call it a closed path, I. (We do not assume that the points Pi are
distinct.) Corresponding to I there is a linear functional 7Tt defined by

The principal properties of these functionals, as established by Diliberto and
Straus, are these:

THEOREM. (1) 7Tt(</» = 0 for all </>E M.

(2) l17Tl II ~ 1.

(3) dist(j, M) = SUPl 7Tt(f).

Although most of the results of this paper are valid for arbitrary compacta
X and Y, it is convenient to retain the terminology of 1R2• For example,
"p - q is horizontal" means that P = (xo , Yo) and q = (Xl' Yo).

THEOREM 2.1. For any two integers N ;;:, 2 and k ;;:, 1,

z~ i dist(f, M) ;;:, IIIN II - 2k (lIfN II - IlfN+k II).

Thus it follows immediately that lim IIIN 1/ = dist(f, M).

Proof Fix Nand k, and let n = N + k. It is convenient but not necessary
to assume that n is even. Then fn is vertically level. Hence there exist points
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Po and qo such thatpo -qo is vertical and fn(Po) = -fiqo) = lIfn Ii. By
Lemma 2.4,

in-I(Po) ~ 2in(Po) - IliN Ii = 211in II -liiN II,
in-l(qo) ~ 2in(qo) IliN II = -211in 11 + l1iN II·

Since in-l is horizontally level, there exist points PI and ql such that Po - ql
is horizontal, qo- PI is horizontal, and

in-I(PI) ~ 211in II - IliN II,

in-l(ql) ~ -211in II + IliN II.

We shall prove by induction that the following assertion, A(r), is true for
r = 1,2,... , k.

A(r): There exist points Po, PI' P2 ,... , Pr and qo, ql , ... , qr forming a path
such that

The preceding remarks have established A(I). Now suppose that A(r) has
been established for a particular r in {1, 2, ... , k - I}. In proving A(r + 1), we
suppose first that r is even. Then n - r - 1 is odd andin_r_l is horizontally
level. Select Pr+1 so that Pr+1 - qr is horizontal andin-r-tCPr+1) ~ -in-r-l(qr)'
By Lemma 2.4 and the induction hypothesis, A(r), we have

in-r-t(Pr+1) ~ -fn-r-l(qr) ~ -2in-r(qr) -lliN II
;;:: -2[-2r Ilin II + (2r -1) lIiN III -lliN II = 2r+l llin 11- (2r+1-1) IliN II.

The choice and analysis of qr+1 is similar. For indices i = 0, 1, ... , r we have
by Lemma 2.4 and the induction hypothesis

in-r-tCPi) ;;:: 2in-rCPi) - IliN II

~ 2[2r Ilin II - (2r - 1) IliN II] - lIiN Ii
= 2r+1llin II - (2r+1 - 1) IliN II.

A similar analysis applies to the points qi . If r is odd, a similar proof can be
given.

Thus A(r) is true for r = k, and)there exist points Po ,,,,,Pk, qo ,... , q"
such thatiN(Pi) ;;:: 270 lIin II - (2 k

- 1) II iN II = IliN II - 2kOI.t:v II -liin 10 and
similarly for qi . Now complete a closed path by constructing Pk+1 and qk+l
in such a way thatiN(Pk+1) ~ iN(q/C+1)' This is possible by Lemma 2.5. Then
we have

. 1 \ Ie. I
dlSt(f, M) ~ 7T1(iN) = 2k + 4 It:o [iN(Pi) - fN(qi)] + iNCPk+!) - iN(qle+l) \

;;:: ;Z t ~ {lliN II - 270(11 iN II - Il/n II)}. •
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COROLLARY 2.1. i dist(f, M) ;;:: 2l1fn+lll -lIfn II, ifn ;;:: 2.

THEOREM 2.2. If the Diliberto-Straus algorithm is applied on a domain
which is a subset ofX X Ythenfor n ;;:: 2 and k ;;:: 1,

dist(j, M) ;;:: Zt ; {llfn II - 2k([lfn II - Ilfn+k II)} - k ~ 2 Ilfn II.

Hence dist(j, M) = 1imn~", Ilfn II·

Proof In the proof of the preceding theorem, the only change to be made
is at the end. Lemma 2.5 is not applicable, but the path can be completed by
any two convenient points Pk+l and qk+l . In the estimate, use

LEMMA 2.6 [5]. For functions of one variable, the averaging operator
Af= t supj(x) + t infj(x) has these properties:

(1) IAv [ <; II v II,
(2) I AVI - AV2 I <; II VI - v2 1[,

(3) II v - Av II = II v II - IAv I.

DEFINITIONS. FixingfE C(X X Y), we define mappings A, B, and S on M
as follows:

(1) Aep = Aij - ep),

(2) Bep = Aif - ep),

(3) Sep = ep + Aep + B(ep + Aep).

We define also

L1(xl ,Yl , X2,Y2) = sup I f(x, Yl) - f(x, Y2)[ + sup If(xl ,y) - f(x2,Y)I,
ro y

A standard compactness argument shows that {f(x, .): x E X} and
{f(-, y): Y E Y} are equicontinuous sets in C(Y) and C(X), respectively. Hence
LI can be made as small as we wish by restricting (x2, Y2) to a neighborhood
of (Xl' Yl)'

THEOREM 2.3. The set K is nonempty, convex, and compact. The map S is
continuous and carries K into K. Hence S has fixed points in K. If ep is any
fixed point ofSin M then ep E K, f - ep is level, and Ilf - ep 1/ = dist(j, M).
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Proof The maps A, B, Sare continuous by Lemma 2.6. For any r/> EM,
we have by Lemma 2.6,

Ilf - SrjJ II = Ilf - r/> - Ar/> - .AyU - r/> - Ar/»II
:'( II! - r/> - Ar/> II = Iif - r/> - v#.",U - r/»II
:'( Ilf - r/> II·

This shows that if r/> E K then Ilf - Sr/> II :'( [Ifll.
If r/>(x, y) = g(x) + hey), then

Sr/> = g + h + .Ax(f - g - h) + B(r/> + Ar/»

= g + Ag + B(g + Ag)

= Ag + BAg.

Now let r/> E M and u = Sr/>. If r/>(x, y) = g(x) + hey), then by Lemma 2.6,

I U(XI ,Yl) - u(x2 ,Y2)1

= I(Ag)(x1 , Yl) - (Ag)(x2 ,Y2) + (BAg)(x1 , Yl) - (BAg)(x2, Y2)1

= l(Ag)(Yl) - (Ag)(Y2) + (BAg)(xl) - (BAg)(x2)I

:'( j .Aif - g)(Yl) - .AxU - g)(Y2)!

+ j.Aif - Ag)(xl) - .Aif - Ag)(x2)!

:'( sup IU - g)(x, Yl) - U - g)(x, Y2)!
'"+ sup l(f - Ag)(Xl' y) - (f - Ag)(x2 , y)i

y

= sup I f(x, Yl) - f(x, Y2)! + sup I f(Xl' y) - f(x2 , y)l·
'" y

This completes the proof that S carries K into K.
For the convexity of K, let CPl and CP2 belong to K, and let 0 :'( A:'( 1.

Put cP = ).,r/>l + (1 - ).,) r/>2' Then clearly, ilf - r/> II :'( II!II. To show that
I CP(XI , Yl) - cp(x2 , Y2)! :'( .1(Xl , Yl' X2,Y2) we compute as follows, with
P = (Xl' Yl) and q = (x2 , Y2):

I cp(p) - r/>(q)1 = ! Acpl(P) + (I - ).,) CP2(P) - ).,CPl(q) - (I - It) r/>2(q) I
< )., I CPl(P) - r/>l(q)I + (I - ).,)!CP2(P) - CP2(Q)!

:'( 1,.1 + (1 - A)Ll = Ll(x1 , Yl , X2 , Y2)'

A simple argument shows that M is a closed subspace. We have prbved
that K is bounded and equicontinuous. In order to prove K closed, let
CPn E K with r/>n -'>- cp. (Pointwise convergence suffices.) The two conditions
for membership in K are then obviously satisfied by r/>.
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By the Ascoli theorem, JK. is compact. By the Schauder Fixed-Point
Theorem, S has a fixed point in K.

Let ep be a fixed point ofSin M. Then Aep + B(ep + Aep) = O. Since Aep is
a function of y alone and B(ep + Aep) is a function of x alone, we have
Aep = c and B(ep + Aep) = -c (or some constant c. It follows that -c =
B(ep + Aep) = B(ep + c) = -c + B(ep). Hence 0 = B(ep) = Jll/ - ep). The
equation JI",(f - ep) = Aep = 0 follows from Lemma 2.7 (below). Hence
/ - ep is level, and II/ - ep II = dist(J, M). I

LEMMA 2.7. 1/Jlx/ = 0 and Jly/ = c, then c = O.

Proof By Lemma 2.6,

II/II = II/ - c - JlIlJ/ + ell

= 11(/ - c) - Jli/ - c)11 ~ II! - ell = II/ - Jly/II

= max {max Ilex, y)/ - /(Jlyf)(x)/} = II/II - I c I· I
x y

Remark. If ep is a discontinuous function of the form hey) + g(x), then
Sep is a continuous function satisfying II/ - Sep II ~ II/ - ep II. Hence, as
pointed out by Diliberto and Straus, the approximation of a continuous /
cannot be improved by allowing discontinuous g(x) + hey).

Remark. The mapping S is defined so that ifhn = / - ep then hn+2 =

f - Sep.

Remark. The fixed-point theorem is not necessary in proving the exis­
tence of a best approximation to / in M. Once Shas been proved to have the
properties 1// - Sep 1/ ~ 1// - ep II and S(K) CK, the existence follows from
compactness of K and continuity of 1//- ep II. The fixed-point argument
produces a best approximation ep such that / - ep is level, a stronger result.

3. SPECIAL RESULTS IN THE DISCRETE CASE

Our objective here is to investigate the structure of the set of best approxima­
tions when X and Yare finite sets. A unicity theorem for best approximations
is one by-product. Insofar as possible, definitions and results are given for
general X and Y.

DEFINITION 3.1. An extremal path for a function / is a closed path I
such that nl!) = dist(f, M). (Recall that the inequality ~ is always valid
here.) The union of all extremal paths for f, considered simply as sets, will be
denoted by E(f). The foI1owing lemma is from [5].
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LEMMA 3.1. -ifllfll = Ilf+ 4> II = dist(f, M) then 4>(.0) = ofor .0 E E(f).
(Here 4> EM.)

DEFINITION 3.2. The null points belonging to f are the elements of the set

.%(f) = n{Z(4)): 4> E M and 11/* + c/> II = !I/* Ii}

where f * is chosen so that f * - f EM and Ilf'" II = dist(f, M), and Z(4»
denotes the set {p: 4>(p) = 0, .0 E X X Y}. (The null points are points where
any two best approximations offInust agree.)

LEMMA 3.2. The dejinition ofnull points is independent ofthe choice off*.

Proof Let f' - /E M, 1If'11 = dist(f, M) = r, and p E n{Z(4)):
11f* + c/> Ii = r}. If 11f' + c/> II = r then

r = III' + c/>tl = 111* + (f' -/+ c/»!! = 111* + (I' - f*)II.

Hence (ff - 1* + 4»(p) = (ff - 1*)(p) = 0 and c/>(p) = O. Thus p E

n{Z(4)): IiI' + 4> II = r}. I

LEMMA 3.3. -if f - f' E M then / and f' have the same null points and
extremal paths.

Proof If f - f' E M then 7Tl(f) = 7Tl(ff) for all closed paths 1. Also,
dist(f, M) = dist(f', M). Hence the extremal paths are the same. Iff * -fE M
and dist(f, M) = Ilf* I), then 1* - f' E M and dist(ff, M) = IIf* II. By the
preceding lemnia,fandl' have the same null points. I

THEOREM 3.1. Let X and Y bejinite. To eachfunctionfdejined on X x Y
there corresponds afunction f * such that1 * - f E M,j * is level, andcrit(f *) =
E(f) (i.e., each critical point of f* is on an extremal path off) erit 1 =
{p: 11(.0)1 = Ilfll}.

Proof By Theorem 3.2 of [3] there exists an f' such that f' - fE M,
crit(f/) = E(f), and 11f' II = dist(f, M). Let I' = 11 be the starting point of
the Diliberto-Straus algorithm. Letf* be the limit of the generated sequence
{In}. Thenf* - /E M andf* is level. It remains to be shown that crit(f*) =
E(f).

Let Xl and Y1 denote, respectively, the projections of E onto the X and Y
sets. Put Xo = X\X1 and Yo = Y\Y1 • Let c denote the maximum of 1f'(p)1
on the set L = (X x Yo) u (Xo x Y). Since crit(ff) C Xl X Yl , we have
c < 11f'11.
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We now prove thatfor n;?; 1, hn+! =/,on Xl X Yl and Ihn+ll < c
on L. Since the step fromh to.h is just like the step fromhn_l toj;n+! , we
need to consider.h only.

By the definitions of Xl and gl , gl = O. 011 Xl and f2 = /' on Xl X Y.
Likewise hI = 0 on Yl and.h = h on X X Yl · Consequently.h = f' on
Xl X Yl .

Now let p = (xo , Yo). Using Lemma 2.6, we obtain the following.

(1) If P E Xo X Ythen Ih(p)/ :0:;; maxYlh(xo , y)1 :0:;; maxylh(xo, y)/:O:;; c.

(2) IfP E Xl X Yo then Ih(p)I = Ih(p)/ :0:;; c.

(3) By (1) and (2), ifP E X X Yo then Ih(p)I :0:;; c.

(4) By (1), if p E Xo X Yl then 1.h(p)l= Ih(p)j :0:;; c.

(5) By (3), ifp EX X Yo then /.h(p)/ :0:;; max", l.h(x, Yo) 1 :0:;; max", Ih(x, Yo)1 :0:;;
c. I

LEMMA 3.4. Let Q be a subset of X X Y such that

[(x, y) E Q, (u, y) E Q, (u, v) E Q] => (x, v) E Q.

Then there exist pairwise disjoint families X~ C X and Y~ C Y such that
Q = U~ (X~ X Y~).

Proof Put Xo = {x E x: (x, y) rJ= Q for all Y E Y},

Yo = {y E Y: (x, y) rJ= Q for all x EX}.

On X\Xo we introduce an equivalence relation ,...,., by putting Xl ,...,., X2 if and
only if there is ayE Y such that (Xl' y) E Q and (x2 , y) E Q. Let {Xo} be the
family of equivalence classes determined by this relation. Define

Y~ = {y E Y: (x, y) E Q

We prove that the Y~ are pairwise disjoint. Suppose that y E Y~ n YI! .
Then (x, y) E Q for all x EX~ U XI!' Take x~ EX~ and XI! E XI!' Then
(x~, y) E Q and (XI!, y) E Q. Hence x~,...,., XI! and X~ = XI!'

We prove that Q :J U~ (X~ X Y~). Let (g, 1]) EX~ X Y~. By the definition
of Y~ , (x, 'TJ) E Q for all x E X", . Hence in particular (t, 'TJ) E Q.

We prove that Q C U~ (X~ X Y~). Let (g, 'TJ) E Q. Then gE X\Xo and'
t E X~ for some cx. Let x be an arbitrary element of X~ . Then t ,...,., x. Hence
there is ayE Y such that (x, y) E Q and (g, y) E Q. By the hypothesis on Q,
(x, 1]) E Q. This shows that (x, 1]) E Q for all x E X~ , and that 'TJ E Y~ . Hence
(g, 1]) E X'" X Y~. I

LEMMA 3.5. Let X and Y be discrete spaces, and let S be a subset ofX X Y
such that when three vertices of a rectangle belong to S so does the fourth.
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Let p E (X X Y)\S. Then there is a function 1>(x, y) = g(x) + hey) such that
1> I S= 0 and 1>(p) = 1.

Proof By Lemma 3.4, there exist sets X", and Y", such that

Y= You U Y""

Let p = (xo , Yo). If X oE Xo , we let g(xo) = 1 and let g(x) = 0 for all other
x E X. Let h = O. Then this g + h has the desired properties.

If Xo rf= Xo , then X o E Xs for some [3. Since p rf= S, Yo ¢ YB • Let g I Xil = 1 =
~h I YB and let g vanish on all the other component sets of X. Let h vanish
on all the other component sets of Y This g + h has the desired proper­
ties. I

THEOREM 3.2; IfX and Y are finite sets then the set ofnullpoints offis the
smallest set S having these properties:

(l) S contains every extremal path for f; i.e., S -:J E(f).

(2) IfS contains three vertices ofa rectangle, then it contains the fourth.

Proof By Lemma 3.3 and Theorem 3.1, there is no loss of generality in
assuming thatfis level, and crit(f) = E(f). We begin by showing that N(f),
the set of null points, has properties (1) and (2). Let 1> E M and II f + if; Ii =
IIfli. By Lemma 3.1, 1> vanishes on E(f). Since this is true for every such 1>,
E(f) C N(f). This is (1). Now suppose that PI"'" P4 are the vertices of a
rectangle and that PI , P2 , P3 belong to N. Then 1>(PI) = 1>(P2) = 1>(P3) = o.
If I is the closed path made from PI ,.." P4 then 7Tl(1» = 0, and therefore
1>(P4) = 0. Again, this is true for all such 1>, and so P4 E N(!). This is (2).

In the second half of the proof we show that N is contained in any set S
having properties (1) and (2). Let P rf= S. By Lemma 3.5, there exists if; EM
such that if; IS = 0 and 1>(p) +- O. Since crit(f) C S, 1> vanishes on crit(f).
Hence an E> 0 exists for which Ilf + Erp II = Ilfll. Since 1>(p) +- 0, pis not
a null point. Thus the complement of S is contained in the complement
~N I

THEOREM 3.3. Let Q be a subset of X x Y such that when three vertices
ofa rectangle belong to Q so does the fourth. If the sets Xoand Yo ofLemma 3.4
are finite, and if there are only finitely many equivalence classes X", say k, then

dim{rpEM: rp I Q == O} = #Xo + #Yo + k-1.
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Proof Select k arbitrary numbers (Xl"'" (Xk and define g(x) = -hey) =
(Xi if (x, y) E Xi X Yi , 1 ~ i ~ k. Let g and hbe defined arbitrarily on Xoand
Yo, respectively. Put ep(x, y) + hey). Obviously, ep E M. If (x, y) E Xi X Yi
then ep(x, y) = g(x) + hey) = 0. Hence ep I Q = 0. Since ep is not changed
if a constant is added to g and subtracted from h, the dimension of the set in
question is at least m == #Xo + # Yo + k - 1.

On the other hand, if ep(x, y) = g(x) + hey) and ep I Q = 0, then g(x) +
hey) = °when (x, y) E Xi X Yi . Hence g(x) is a constant (Xi on Xi and
hey) = -(Xi' Thus a set of m functions ep can be constructed, taking only
values °and 1, to span {c/J: ep I Q = OJ. Hence the dimension of this set is
no greater than m.1

LEMMA 3.6. Let f be a function on X X Y, X and Y being finite sets. Let
Q be the set of null points (Definition 3.2). Let Xo U Xl U .. , U X k and
Yo U Yl U ... U Yk be the decompositions ofX and Y described in Lemma 3.4,
relative to the set Q. Then

dim{ep E M: Ilf+ ep II = dist(f, M)} = #Xo + # Yo + k - 1.

Proof By Lemma 3.3 and Theorem 3.1, there is no loss of generality in
assuming that IIfll = dist(f, M) and crit(f) = E(f). By Theorem 3.2, Q
satisfies the hypotheses of Lemma 3.4. By the definition of Q, eP I Q = °
whenever Ilf + ep II = IIfli. Thus the set whose dimension we wish to compute
is a subset of {eP EM: eP I Q = OJ, and by Theorem 3.3 the former has dimen­
sion at most m = #Xo + # Yo + k - 1.

On the other hand, if ep E M and ep I Q = 0, then because the domain is
discrete and crit(f) C Q, we can determine an € # °for which IIf+ €ep II =
Ilfl[. Thus the dimension to be computed is at least m. I

THEOREM 3.4. Let X and Y be finite sets. A function f on X X Y has a
unique best approximation in M if and only if every point of X X Y is a null
point off

Proof By the preceding lemma, unicity of the best approximation occurs
exactly when #Xo + #Yo + k - 1 = 0. Since k ~ 1, #Xo~ 0, and
#Yo ?: 0, the condition is that k = 1, #Xo = 0, and #Yo = 0. Hence Xo
and Yo are void. I

The matrix formulation of Lemma 3.4 is as follows.

LEMMA 3.7. Let A be a matrix ofO's and l's such that whenever three O's
are vertices of a rectangular pattern, the fourth vertex is also a zero. Then by
row and column permutations A can be put into the block form
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where the shaded area is occupied solely by 0's and the unshaded area is occupied
solely by l's.

Proof By row and column interchanges, the rows and columns consisting
entirely of l's are moved to the top and left. Let these rows and columns be
described by the inequalities 1 ~ i ~ n, 1 ~ j ~ m. In the next step permuta­
tions involving only indices i > nand j > m are performed to obtain a
maximal rectangle of O's in the upper left-hand position of the sub-matrix.
Let this rectangle be described by n < i ~ p, m <j ~ q. If there is an element
av", = 0 with n < v ~ p and f.L > q, then by the hypothesis on A, we would
have ai", = 0 for n < i ~ p. An interchange of column f.L with column q + 1
would enlarge the maximal rectangle ofO's. In this way we show that elements
to the right of and below O-blocks are all l's. The proof is completed by
repetition of this process. I

4. SPECIAL PROBLEMS ON FINITE DOMAINS

Here a special case of the Diliberto-Straus algorithm is considered-one
in which the generally nonlinear process becomes linear. The approximation
problem on any Cartesian product of finite sets can always be solved by a
finite sequence of the linear problems discussed here.

Assume that C and Yare two finite sets, each containing exactly n points,
The domain, D, of our functions is a subset of X X Yhaving theseproperties:

(1) The points of D can be labelled in such a way that the result is a path:
D = [PI, P2 , ... , P2n] (n = #X = # Y).

(2) Each horizontal or vertical line of X x Y contains exactly two points
of D. .

We can assume the labelling of D is chosen so that Pi = (Xi, Yi), X 2i = X 2i+l,

Y2i = Y2i-1 , and X 2n = Xl .

Now letjbe any function defined on D. We intend to subtractfromja
function cf;(x, y) = g(x) + hey) so thatj - cf; is level on D. This will produce
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the best approximation <p at once. The "levelling equations" are (for
1 ~ i ~ n)

!(P2i) - g(P2i) - h(P2i) +!(P2i+1) - g(P2i+1) - h(P2i+l) = 0

!(P2i-l) - g(P2i-l) - h(P2i-l) + !(P2i) - g(P2i) - h(P2i) = 0

In these equations P2n+l = PI. With the abbreviations

Ui = g(P2i) = g(P2i+1)'

Vi = h(P2i) = h(P2i-l),

2bi = !(P2i+1) +!(P2i),

2Ci = !(P2i) +!(P2i-l)

the system (3) can be written in the form

Ui + t(Vi + Vi+1) = bi ,

Vi + t(Ui-l + Ui) = Ci·

In matrix form this is

(3)

(4)

with bi} = t if (0 ~j - i ~ 1) or (i = n andj = 1), and bij = 0 otherwise.
Now it is necessary to prove that the following matrix is of rank n - 1.

[ 2

-1 0 0 0 0

-~]-1 2 -1 0 0 0

A = t ~ -1 2 -1 0 0 o .

-1 0 0 0 0 -1 2

Since any constant vector is in the null space of A, the rank of A is at most
n - 1. We will show that the (n - 1) X (n - 1) matrix AO obtained from A
by removing the last row and column is nonsingu1ar. Suppose that z =
(ZI ,..., zn-J and that zAo = O. This system of equations is

2z1 - Z2 = 0,

- Zi + 2zi+1 - Zi+2 = 0,
-Zn-2 + 2zn _ 1 = 0,

1 ~ i ~ n - 3,

These equations can be employed one-by-one to express each z, in terms of
ZI' the result being z, = iZ1 (1 ~ i ~ n - 1). The last equation then states
that -en - 2) ZI + 2(n - 1) ZI = 0, whence ZI = O. Hence Z = 0 and AO
is nonsingu1ar.
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implies that the second factor has rank 2n - 1. The vector f3 = [1, ... , 1,
-1,... , -1] is orthogonal to its columns. In order to prove that system (4) is
consistent, it suffices to prove that f3 is orthogonal to [h, c]T. The required
calculation is

THEOREM 4.1. The best-approximation operator for the domain D is
linear, and the linear system ofequations (4) which determines the best approxi­
mation is consistent.

Of course, the consistency of the system of equations also follows from an
existence theorem for the ep such thatf - ep is level.

The foregoing analysis can be used to compute the best approximation in
one step on any domain D having the property· that every horizontal or
vertical line through a point of D contains exactly one other point of D. In
this case, D can be decomposed into a disjoint union of paths on each of
which f - ep can be made level by solving linear equations.

The formal way of decomposing D is to define an equivalence relation
p ,....., q to mean that p can be joined to q by a polygonal line whose vertices
are in D and whose line segments are alternately horizontal and verticaL The
equivalence classes give the decomposition D = U Di • This can be done
whether X and Yare finite or infinite sets. If M(D) denotes the space of
functions 1>(x, y) = g(x) + hey) on D, we have

THEOREM 4.2. Corresponding to the decomposition D = U Di , M(D)
has the direct-sum decomposition

M(n) = L ffiM(D i )·

Here it is understood that if ep = L epi with 1>i E M(Di) then ep(p) = eplp) if
p EO Di . Furthermore, II ep II", = SUPi II1>i II", .

Proof If 1> E M, let epi(P) = ep(p) on D i and eplp) = 0 elsewhere.
Obviously ep = L epi . If epi E M(D j ) then epi = rP I D j for some ep E M. Then
rPi I D i = (ep ID j ) I D i = 0 by disjointness of D i and D j • I

Reference [6] came to our attention after we completed our work. It
contains another proof of convergence of the Diliberto-Straus algorithm.
References [1, 7] contain an abstract account of algorithms having the form
of the Diliberto-Straus algorithm.
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